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Motivation The Eye-CU System and the cc-LS Method Results

Manual analysis of body poses of bed-ridden patients requires staff to

continuously track and record patient poses. Two limitations in the dissemination - . . .
of pose-related therapies are scarce human resources and unreliable automated Eye'CU Conflguratlons Contrast Wlth Competlng
systems. This work addresses these issues by introducing a new method and a : : i L COWPETINGNETHODS '~ “PROPOSED cots

new system for robust automated classification of sleep poses in an ICU The Eye-CU system was de5|gned and tested in a mock-up ICU room. The k-th datapoint extracted from scene c has the following structure: o L | =1 e
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Healthcare Statistics In the ICU wanrrcom s I - = {HOG(R), gMOM(D), gMOM (P)};,

B 5 million people per year are admitted to the ICU. == = The objective is to find the label index I, which maximizes the trusted .
B 46% are over the age of 65. —~_ | multimodal score: e |

B Annual national ICU cost is $130 billion and rising $5 billion per year. . = — ) M Pilow )

B Average duration of stay in the ICU is 9.3 days. . e I = argmax(S%) = arg max z (ng (CLF(f )}z) of s

B Mortality rate is 10-30% and increases by 7% per day. R B\ : leL (el —
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: | i ] ' : . . Table 1. Left: Classification performance of the various Eye-CU configurations (based
B Year 2020 eStlmateS_ . 5 S ity . CLF = P(z|xx, M = m) on modalities and views available). Table 2. Right: Classification performance of the
0 ICU el.d_erly population .WIII Increase to 69%. il : : : MpM cc-LS system configuration and comparable competing methods.
B Caregiver workforce will shrink by 35%. O =7 _ wy  is the trust or weight value for modality m and scene ¢
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| | Confusion Matrlces Bright and Clear
Eye-CU system node and its components. perspective top w = [wg, wp, wp]T, cis omitted and N, = w,,, (m = 1: wy.. = wg). | ‘ 5
eC S O Oses On ea view of the Eye-CU node location w.r.t to the patient and the ICU bed. mock- o | 3 012345678910 012345678910 0123466788970
- - - perspective side view of the nodes and the patient. 1 |
Sleep Deprivation Decubitus Ulcer
B Bad night increases ICU stay by 10%. M 2.5M cases (80% in ICU)
B I\/Ieasu_ring techniques: Bl Measuring techniques: The dataset will be available online at url: vision.ucsb.edu | & 0§ 234 SR?EE;C%SSO 01234 gRsEglcsngo 01234 EI;RGE[ZI(?TEE;O
H Intrusive polysomnogram b Braden scale (subjective) S10

up ICU room where the system is installed and the sleep pose data is collected.
B Sleep position(s) > quality of sleep B Pose and bony areas Multimodal Multiview Dataset
B Non-objective surveys O Rounds & pose rotations

Flgure 7. Confusion matrices of the Huang, Torres, and cc-LS with MpM
Symbol E, £ » ¥ pose classification methods under bight and clear (ideal) scene conditions.
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Confusion Matrices: Dim and Occluded
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POSE AnaIyS|S Cu rrent Appl |Ca.t|0n5 Figure 8. Confusion matrices of th Huang, Torres, and cc-LS with MpM
) ) . o i o L — i i o pose classification methods under dim and occluded scene conditions.
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Figure 1. Sleep analysis using Figure 2. Common decubitus ulcers

polysomnogram electrodes connected to (bed sores) incidence areas.
patients head, torso, and finger. Depth (D)
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Future Work
» Sequence X

(MD: Bad Sleep) - Light Bright Medium Dark Bright Medium Dark Bright Medium Dark Bright B Integration of temporal information and pose representation with

SequenceA | &= T Sequence B deep features and artificial neural net architectures.
~ Blanket P

o |==2= I " Occlusion Clear Clear Clear  Blanket Blanket Blanket Pillow  Pillow Pillow . B Quantify and typify pose sequences (duration and transition) and will

B f@q[;{eggeogsme 5 Pillow investigate removing the constraints from the set of poses.

Figure 6. Partial dictionary of multimodal multiview pose data for one actor in 10 poses and 12 scene conditions observed from three views and three modalities
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Figure 3. Clinical applications of the Eye-CU system and the cc-LS method for patient
sleep pose analysis.
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Figure 4. Left: sleep pose performance using deformable part models. Right: sleep pose

performance using pose recognition from single depth image (i.e., Kinect API). Finally, b =




